Counterexample-Driven Genetic Programming without Formal Specifications

Thomas Helmuth
Hamilton College
Clinton, New York, USA
thelmuth@hamilton.edu

Lee Spector
Amherst College, Hampshire College,
and U. Massachusetts, Amherst
Amherst, Massachusetts, USA
lsppector@amherst.edu

Edward Pantridge
Swoop
Cambridge, Massachusetts, USA
ed@swoop.com

ABSTRACT
Counterexample-driven genetic programming (CDGP) uses specifications provided as formal constraints in order to generate the training cases used to evaluate the evolving programs. It has also been extended to combine formal constraints and user-provided training data to solve symbolic regression problems. Here we show how the ideas underlying CDGP can also be applied using only user-provided training data, without formal specifications. We demonstrate the application of this method, called “informal CDGP,” to software synthesis problems.

CCS CONCEPTS
• Computing methodologies → Genetic programming.

KEYWORDS
genetic programming, program synthesis, counterexamples

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

ACM Reference Format:

1 INTRODUCTION
The bulk of the computational effort required for genetic programming is expended in the evaluation of the errors of programs in the evolving population. Typically, each program is evaluated on many inputs, which are generally referred to as “fitness cases” or “training cases.” In most prior work, the set of fitness cases that will be used for program evaluation during evolution is specified in advance of the genetic programming run, and all available cases are used for each program evaluation.

A recent method [1, 2, 5, 6] for decreasing the number of cases needed to evaluate each individual generates new cases on the basis of formal specifications for the problem that genetic programming is being employed to solve, that are not yet correctly handled by the programs in the population. These “counterexamples” provide more focused guidance to the evolutionary process than do random test cases, and appear to direct evolution more specifically to master aspects of the target problem that are not properly handled by individuals in the current population. This approach is known as “counterexample-driven genetic programming,” or CDGP.

In this paper we describe a new method, inspired by CDGP, that does not require formal specifications. The approach that we describe, “informal CDGP,” (iCDGP) evaluates individuals during evolution using only a small sub-sample of the user-provided fitness cases, allowing more individuals to be assessed within the same computational budget. The fitness cases that are used are not chosen randomly, but rather are chosen to be counterexamples for the best individuals in the current population. This allows iCDGP to direct evolution in much the same way as CDGP, but without requiring that the user provide formal specifications for solutions to the target problem. Since we do not have formal specifications, we instead expect the problem to be defined by a full training set of input/output examples, typically numbering 100 or more, which we call T.

In informal CDGP, we use an active training set, $T_A \subseteq T$, that GP uses to evaluate the individuals in the population. In all of our experiments, T_A initially contains 10 random training cases from T, although other sizes could be used. During evolution, if an individual is found that passes all of the cases in T_A, we test the individual on all of the cases in T; if it also passes all of them, then it is a training set solution and GP terminates. Otherwise, we select a random case in T that the individual does not pass, add it to T_A, and continue evolution. Note that if multiple individuals in a generation pass all of the cases in T_A, each of them goes through this process, potentially adding multiple new cases to T_A for the next generation.

Given that we already have a set of training cases, why does informal CDGP use a smaller, likely less-informative set of active training cases instead of just using all available training data? As with other approaches based on the sub-sampling of fitness cases ([3]), a smaller active training set allows us to perform fewer program executions per generation, making each generation computation-ally cheaper than if using the full set of training cases. In our experiments, we compare methods based on the same maximum number of program executions, allowing informal CDGP to run for more generations than standard GP while using the same total program executions. Additionally, the informal CDGP idea of adding a counterexample case to T_A that the best individual doesn’t pass (borrowed from formal CDGP) allows it to augment the training set in ways that specifically direct GP to solve difficult parts of the problem.
We conclude that informal counterexample-driven genetic programming (informal CDGP) advances the state of the art for software synthesis by genetic programming. The results documented here are better, as far as we know, than any previously published for this set of benchmark program synthesis problems. The informal CDGP approach builds on the recent advance provided by formal CDGP, but it is likely to be more widely applicable because it does not require a formal specification of solutions to the target problem. The same set of test inputs that would be used for traditional genetic programming can be used for informal CDGP, with the only difference being that they will be used differently. Specifically, informal CDGP begins with a small initial subset of the cases, and augments the subset with counterexamples whenever an individual passes all of the current cases, or whenever some number of generations has passed.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under Grant No. 1617087. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation.

REFERENCES